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ABSTRACT Potential larval habitats of the mosquito Culex tarsalis (Coquillett), implicated as a
primary vector of West Nile virus in Wyoming, were identified using integrated remote sensing and
geographic information system (GIS) analyses. The study area is in the Powder River Basin of north
central Wyoming, an area that has been undergoing a significant increase in coalbed methane gas
extractions since the late 1990s. Large volumes of water are discharged, impounded, and released
during the extraction of methane gas, creating aquatic habitats that have the potential to support
immature mosquito development. Landsat TM and ETM+ data were initially classified into spectrally
distinct water and vegetation classes, which were in turn used to identify suitable larval habitat sites.
This initial habitat classification was refined using knowledge-based GIS techniques requiring spatial
data layers for topography, streams, and soils to reduce the potential for overestimation of habitat.
Accuracy assessment was carried out using field data and high-resolution aerial photography com-
mensurate with one of the Landsat images. The classifier can identify likely habitat for ponds larger
than 0.8 ha (2 acres) with generally satisfactory results (72.1%) with a lower detection limit of ~0.4
ha (1 acre). Results show a 75% increase in potential larval habitats from 1999 to 2004 in the study
area, primarily because of the large increase in small coalbed methane water discharge ponds. These
results may facilitate mosquito abatement programs in the Powder River Basin with the potential for
application throughout the state and region.
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Accurate mapping of the spatial distribution of mos-
quito breeding habitats is essential for cost-effective
deployment of control practices. Geospatial mapping
by using remote sensing offers the potential to identify
larval habitats on a large area basis to a degree that is
difficult or impossible using conventional ground sur-
vey (Hayes et al. 1985, Washino and Wood 1994, Dale
et al. 1998, Hay et al. 1998). The objective of this study
is to assess potential larval habitats of Culex tarsalis
(Coquillett) by using Landsat TM imagery in the Pow-
der River Basin of northern Wyoming in an effort to
establish a basis for predicting risk of exposure to West
Nile virus. Mosquitoes of the genus Culex are the
dominant disease vector and transmitter of the West
Nile Virus (Hayes 1989, Goddard et al. 2002). In Wy-
oming, the primary vector species is Culex tarsalis
(E.T.S., unpublished data).

Mosquito control is a critical component of the
arbovirus control programs, and one of the most ef-
fective ways to control a mosquito population is to
reduce its larval (breeding) habitats. Previous studies
have shown benefits of using remote sensing in the
identification of mosquito breeding habitats (Linthi-
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cum et al. 1987, Pope et al. 1992, Wood et al. 1992, Dale
and Morris 1996, Thomson et al. 1996, Masuoka et al.
2003). However, these studies have not targeted West
Nile Virus or the intermountain West and plains areas
in Wyoming where West Nile Virus risk is high. Rogers
et al. (2002) used AVHRR 1-km resolution data set to
create a West Nile virus risk map in North America.
From an operational point of view, the map resolution
is too coarse to implement local control strategies and
is not specific to larval habitat. With the increasing
status of this emerging arbovirus, a more accurate and
finer grained mapping system is necessary to aid the
West Nile Virus prevention program. Landsat TM data
has proven to be an excellent choice for environmen-
tal studies in past 26 yr. Landsat spectral data, partic-
ularly band 4 (infrared) and band 5 (mid-infrared) are
well suited for vegetation and water content analysis,
and data are collected at a scale suitable for regional
and local analysis. For these reasons Landsat TM data
were chosen as the base imagery for larval habitat
assessment.

Since West Nile Virus arrived in New York City in
1999, it has spread across the North American conti-
nent (Enserink 2002), and by the end of 2004, the total
human deaths reached 374 cases nationwide. The state
of Wyoming was hit heavily in 2003 with 375 human
cases, including nine deaths (CDC 2004). In addition
to posing a clear threat to human health, the West Nile
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Virus poses a threat to native wildlife species. For
example, the West Nile Virus is hypothesized to be
responsible for the sharp decline of greater sage-
grouse, Centrocercus urophasianus, in this region be-
cause the survival rate of this species has been reduced
by 25% in recent years (Naugle et al. 2004). Of im-
portance to potential management and control strat-
egies in this area, the greater sage-grouse is an eco-
logically threatened species in the United States, and
there is concern regarding the impact of the virus on
sage grouse populations throughout the West (Naugle
etal. 2004). At aminimum, alterations to the landscape
and subsequent threats to wildlife and people indicate
that monitoring and controlling the West Nile virus is
a critical and potentially long-term commitment
(Morse 2003) requiring a temporal and spatial strat-
egy.

In general, Cx. tarsalis are small standing water
species. Gravid females are attracted to water with
high organic matter (Beehler and Mulla 1995) and
larvae of Cx. tarsalis feed on organic debris in water
that has a very little disturbance either in the form of
wave action or flow. In a natural environment, larval
habitats of Cx. tarsalis are often associated with veg-
etation growing at pond edges (Reisen 1993). More
specifically, the edges of small water bodies where
vegetation and other debris are concentrated are iden-
tified as larval microhabitat. Large water bodies (usu-
ally larger than 4 ha [10 acres]|) that are exposed to
wind and wave action, and running water such as a
river or stream, are not suitable for larval develop-
ment. Open waters are also unsuitable because larvae
and pupae are vulnerable to predation (Laird 1988).
Nutrition concentrations in open water region and
running streams are generally much lower than pond
edges and small standing water (Laird 1988). Accord-
ing to a survey conducted by Denke and Spackman
(1990), the majority of mosquito-breeding habitats in
Wyoming are created by human activities. In the Pow-
der River Basin, human-made water storages, such as
livestock watering ponds and discharge water ponds
used in coalbed methane (CBM) development (nat-
ural gas) constitute the most likely breeding and larval
habitats for Cx. tarsalis (Fig. 1).

CBM is a naturally occurring gas contained within
unexposed coal beds. Recently strong demand makes
it potentially highly profitable to extract CBM from
buried coal seams. Water is a critical component in this
system, because gas is held in place by water pressure.
To extract methane, the water must be removed to
allow the gas to flow freely from the coal, in a process
referred to as “dewatering” (Nuccio 2001). The
amount of water produced in this manner is consid-
erable. Rice et al. (2000) estimated that >1.28 million
barrels of water was produced each day from CBM
extraction in 2000. Wyoming has witnessed a sharp
increase in CBM discharge ponds associated with the
development of CBM fields throughout the state, par-
ticularly the Powder River Basin in northern Wyo-
ming because it has experienced the greatest growth
in volume of discharge water and numbers of wells and
ponds over the past decade (WOGCC 2005). Vast
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quantities of methane gas occur in association with
shallow coal beds (24,000 feet in depth) that underlie
the Powder River Basin in north central Wyoming.
Since 1999 when it became economically feasible to
tap natural gas in the Powder River Basin, ~19,000
CBM wells have been drilled, and ~20,000 additional
wells are projected over the next decade. Total re-
coverable production of coproduced water in the
Powder River Basin alone exceeds 5.5 million acre-feet
(DOE 2002). In the study area, the majority of cop-
roduced water is discharged onto the surface and into
small detention basins, leading to an increase in small
water bodies. These recent increases in ponded water
are hypothesized to increase WNV risk because CBM
ponds may serve as suitable habitat for larval Cx. tar-
salis.

Materials and Methods

Data and Software. The basic research strategy was
to 1) develop habitat classification techniques using
historical imagery, 2) classify two images using these
techniques to capture the temporal and spatial
changes in habitat, 3) validate these techniques by
using a combination of field observations and high
resolution aerial photography.

Landsat TM images and other GIS data were ob-
tained from the WyomingView data repository via the
Wyoming Geographic Information Center download
site  (http://www.wygisc.uwyo.edu/ clearinghouse).
Three images were selected for use in this study that
capture the temporal and spatial changes: 12 August
2004 (Landsat 5 TM), 14 August 2001 (Landsat 7
ETM+), and 9 August 1999 (Landsat 7 ETM+). The
ETM+ images are USGS L1-T products that have been
processed for radiometric, geometric, and terrain cor-
rections. The 1999 and 2004 images serve as end mem-
bers for change detection, whereas the 2001 image was
classified as a separate validation data set and com-
pared against high-resolution photography taken at
approximately the same time. The TM image has been
corrected for radiometric and geometric distortions.
Spatial data used in the GIS portion of this research
were National Elevation Dataset for Wyoming (DEM;
30-m spatial resolution ), National Land Cover Dataset
for Wyoming (NLCD; 30-m spatial resolution), and
major hydrography features. Color infrared Digital
Orthophoto Quarter Quads (DOQQs; 1-m spatial res-
olution acquired in July 2001) were downloaded from
the Wyoming Spatial Data Clearinghouse (http://
wgiac2.state.wy.us) for validation of the 2001 imagery.

An integrated raster (image classification) and vec-
tor (GIS) analysis was used to refine the identification
of Cx. tarsalis larval habitat. Image classification was
conducted using the ERDAS IMAGINE 8.7 (Leica
Geosystems GIS & Mapping, LL.C, Atlanta, GA). Im-
age processing algorithms in this paper are cited at
ERDAS documentation (ERDAS, Inc. 2003).

To address that suitable habitat may be defined as
the junction between riparian vegetation and water, a
GIS-based spatial analysis procedure was imple-
mented in ArcGIS 9.0 (ESRI, Redlands, CA) to union
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Fig. 1. Discharge pools of CBM development. The Cx.
tarsalis larval habitat is the vegetation at the pond edges.

all dense vegetations identified from panchromatic
band and any riparian vegetation located at the edges
of water bodies. Union is a process of merging over-
lapping multiple features into a single feature. All such
pixels were classified as potentially suitable habitats.
Selected habitats were exported into an ArcGIS for-
mat shapefile for refinement by using GIS techniques.

Based on the factor that large water bodies and
flowing streams are not suitable for larval develop-
ment of Cx. tarsalis, pixels that spatially intersected or
abutted these features were eliminated. Large open
water bodies larger than 4 ha were identified using
standard patch analysis. Small digitization and geo-
rectification errors may cause discontinuities between
the imagery and GIS data sets, resulting in the out-
come that stream lines do not always directly overlap
with corresponding water and riparian classes in clas-
sified images. A 30-m buffer zone was created to en-
sure that pixels of major streams in the classified im-
ages intersected with their GIS-based vector
counterparts. Potential habitat that intersected with
the buffered major stream vector data were excluded
from the final classified map.

Another potential source of error occurs where
shadows from hillside or forest areas are misclassified
as water; these areas were eliminated by only allowing
classified habitat pixels to be present on slopes <5°.
This approach served the dual purpose of removing
areas where water is flowing due to gravity from con-
sideration under the premise that larval habitat is
dependent on stagnant or very slow-moving water.
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Fig. 2. (A) Typical larval habitat of Cx. tarsalis in the

Landsat TM image (red, band 4; green, band 5; blue, band 3).
The circled area is the Areas of interest. (B) Bands in spectral
reflectance graph are as follows: Landsat TM, bands 1-6;
NDVI*100, band 7; NDWI*¥100, band 8; flood index*100,
band 9; Tasseled cap transformation bands 10, brightness; 11,
greenness; and 12, wetness.

Image Classification. From a false color composite
Landsat TM image, a typical larval habitat of Cx. tar-
salis can be recognized as a mosaic of several dark
pixels (water) adjacent to red pixels (vegetation)
(Fig. 2). Areas of interest (AOI) were delineated by
selecting pixels in known larval-positive sites (Fig. 2).
Because of limited access to the area due to private
landholdings, field samples could not cover all com-
binations of land cover types identified in the scene.
To compensate for uneven access to the study area
and to create a more evenly distributed set of training
data, additional areas of interest were manually se-
lected according to field experiences and familiarity
with the region. In addition to six bands of Landsat TM
data, several variables that may contribute to the im-
age classification were derived and stacked with orig-
inal images. These variables are: Normalized differ-
ence vegetation index (NDVI); flooding index (FIL;
Philipson and Hafker 1981); Normalized Difference
Water Index (NDWI; Gao 1996), and Tasseled cap
transformation (Kauth and Thomas 1976, Crist and
Cicone 1984).

The classification workflow is shown as Fig. 3. An
unsupervised classification (Iterative Self-Organizing
Data Analysis Technique; ISODATA) was used to
generate four classes in the areas of interest extracted



September 2006

Z.0U ET AL.: HABITAT ASSESSMENT OF WEST NILE VIRUS VECTOR MOSQUITO

1037

Landsat
-T™™
image

Derive variables
(NDVI, NDWI, flooding
index, Tasseled Cap)

C.tarsalis
positive sites

fRule sets:

Water body size < 10 acres

High pass filter

Slope < 5

Threshold of panchromatic band
Non forest

Not interacted with major stream
Not interacted with large lakes

- A

Stacked
layers

with all
variables

Classified
image

Select training ISODATA on
sites —>» training sites

Signature of
classes

Supervised
classification

Apply rules

C.tarsalis
habitats

Fig. 3. Workflow of classification of Cx. tarsalis larval habitats.

from the positive sites from field sampling. The mean
of each cluster is determined by an iterative process to
meet the condition that each pixel is assigned to the
class with the minimum distance (see equation). It-
erations stop when the convergence threshold T, nor-
malized percentage of pixels without change of as-
signment, is reached (in this case, T reached the
threshold of 95% at iteration 3). A fifth class was added
into the signature editor by using grassland pixels
extracted from an AOI because grasslands are the
dominant background vegetation type surrounding
water and emergent vegetation. Using the signature
generated from ISODATA, a supervised classification
was conducted to classify the image. The parameter
setting is as follows: nonparametric rule (paral-
lelpiped), overlap rule (parametric rule), unclassified
rule (parametric rule), and parametric rule (minimum
distance). First, a candidate pixel is subjected to par-
allelpiped classification in which a pixel is assigned
within the limits of mean = SD of each class. Second,
pixels in the overlapping region of classes or left with-
out assignment to any class in parallelpiped classifi-
cation are assigned to the closest class by using the
parametric rule of minimum distance (see equation).
The spectral distance from pixel x, y to the mean of
class c is defined as SD, . by using the equation:

SD,,. =

E(I‘Lci - X«yi)Q
i=1

where X, is data file value of pixel x, y in band i, and
H; is mean of data file values in band i for the sample
for class c.

These five classified classes were compressed into
three classes: water, dense vegetations, and grasslands

and shrubs. Cx. tarsalis larval habitat was represented
as dense vegetation immediately adjacent to small
water bodies. The habitats were extracted from clas-
sified images to meet these criteria. Final habitats were
generated using rule based modeling according to the
knowledge from experts and our field experiences.

Accuracy Assessment. A field study was undertaken
in August 2004 to identify Cx. tarsalis larval habitats.
Sampling coordinates were recorded using a geo-
graphic positioning system and transformed into a GIS
data layer. Mosquito larvae were collected along pond
edges by using a standard dipper. For each site, four
dipping were taken every 5 m with a total distance of
100 m. Collected larvae were sorted by species at the
USDA-ARS Arthropod Borne Animal Disease Re-
search Laboratory in Laramie, WY. Sites were classi-
fied as positive if larvae of Cx. tarsalis were identified.
Sites positive for Cx. tarsalis were overlaid with the
image and used as training sites for the extraction of
appropriate spectral signatures.

The classified result from the 14 August 2001 image
was compared against the DOQQs on 1 July 2001 for
an accuracy assessment. The area covered by the
DOQQs is ~171,450 ha. All small water bodies (ex-
cluding running rivers) in the DOQQs were digitized
by hand as a proxy for ground truth. As noted, this area
is highly dynamic due to the very rapid pace of CBM
development, and the use of aerial photography serves
as a static data layer that was coincident in timing with
the satellite overpass. Ponds with area larger than
~0.04 ha (=~0.1 acre) were used as the reference
(equivalent to 1 pixel size in Landsat TM images, 30 by
30 m). The error matrix was computed using the final
classified results and digitized ponds.
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Fig. 4. Section of classified map of Cx. tarsalis larval
habitats. The habitats are shown as the ring-shaped polygons
covering the area of vegetation adjacent to small water bod-
ies.

Results

Spectral Analysis and Interpretation of Classes. The
spectral reflectance curves of classified classes gener-
ated from the ISODATA are illustrated in Fig. 2. From
the spectrum of the original five classes and the com-
parison of raw imagery and the aerial photo, these
classes were compressed into three distinct classes:
water, dense vegetations, and grasslands and shrubs.
Dense vegetations in the study area are predominantly
herbaceous materials associated with high soil mois-
ture that consequently has higher values in the NDWI
(band 8) and the wetness index (band 12). Grasslands
and shrubs occupy portions of the image that are more
typically open and dry landscapes where the soil mois-
ture content is lower. Their presence is indicated by
higher brightness value (band 10) and lower values in
the NDWI (band 8) and the wetness index (band 12).

Based on field observations, we consider that the
primary larval habitats of Cx. tarsalis are where ripar-
ian vegetation is immediately adjacent to small water
bodies. In our classification system riparian vegetation
falls under the general classification of “dense vege-
tation,” and habitat is identified in locating small water
bodies and performing a proximal analysis to dense
vegetation that represents emergent and riparian
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communities. Grasslands and shrubs are not consid-
ered as indicators or suitable larval habitats. A high
pass 30-m filter was created to identify dense vegeta-
tion class immediately adjacent to water class, and
these pixels were identified as Cx. tarsalis larval hab-
itats.

Refinement of Classified Image for Habitat Suit-
ability by Using Spatial Analysis. A scale issue was
identified in the classification and field identification
process: some very small ponds, usually smaller than 2
to 3 pixels, were improperly not classified as open
water because they are mixed pixels in Landsat TM
images. A significant number of these mixed pixels
were classified as dense vegetations and are more
properly classified as potential Cx. tarsalis larval hab-
itats. Indeed, small standing water bodies have a
greater potential for larval development than large
open bodies of water, so identifying and classifying
small bodies with adjacent dense vegetation is impor-
tant but challenging given the limitation of pixel res-
olution. To refine these “missing” habitats, a secondary
classification was performed by setting a threshold of
exceedance in the panchromatic band, which has a
higher spatial resolution (15 m). A rule set was estab-
lished to filter out all dense vegetation pixels with a
patch size smaller than 5 pixels (multispectral bands)
because these small patches have the potential to be
mixed water/riparian pixels in the 30-m data. These
candidate pixels were further screened by eliminating
the area where the digitial number (DN) value in the
panchromatic was above a threshold set individually
for each image (DN = 43 for 2001). Small patches with
panchromatic DN less than the threshold are there-
fore classified as suitable habitat.

This refinement was performed for the 2001 image
only. The 2004 image is Landsat 5 (Landsat 7 data are
unavailable because of satellite equipment malfunc-
tion), which does not have a panchromatic band.
These satellites are suitable for comparative analysis
because they have exactly the same spectral range in
bands 1-6. Although the habitat class in 2001 image
accounts for ~15.7% of all suitable habitats, there does
not seem to be a temporal trend in the type and size
of CBM discharge ponds in the study area. By losing
access to the panchromatic band and not identifying
habitat classes, we are underpredicting potential Cx.
tarsalis habitat but not biasing the results with differ-
ential methods for the imagery. Future research will
focus on higher spatial and spectral resolution data sets

Table 1. Error matrix of classification of Cx. tarsalis larval habitat
Color infrared photo
Classified image Total CA %
>4 acres >3 acres >2 acres >1 acre >0.22 acre

Habitat 14 18 49 99 185 211 87.68
Nonhabitat 2 6 19 62 257

Total 16 24 68 161 442

PA % 87.5 75.0 72.06 61.49 41.86

CA, consumer’s accuracy; PA, producer’s accuracy. An area of 0.22 acre is equal to 1 pixel size in Landat TM images (30 by 30 m) (1 acre =

4,046.86 m?).
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Table 2. Classes resulting from unsupervised/supervised clas-
sification of the Powder River Basin

Feature 1999 ha 2004 ha % increase
Water 478.8 836.9 74.8
Habitats 619.0 1084.5 75.2

1 ha = 10,000 m*.

to isolate and identify small patches of potential larval
habitat.

The final product generated from the classification
procedure is shown as Fig. 4. By comparing the clas-
sified results with digitized small ponds in DOQQs, an
error matrix was calculated and is presented as Table
1. Ponds are divided into different categories by their
sizes because pond size is a primary limiting factor in
the classification. Ponds smaller than the size of 1 pixel
were not considered in this study, and we think that
attempting to identify these ponds is beyond the ca-
pability of the Landsat TM images. The producer’s
accuracy reflects how well a pond on the ground
(reality) is properly identified, and it is satisfactory for
ponds larger than 0.8 ha (2 acres) (>70%). The pro-
ducer’s accuracy drops down to 61.5% after the pond
size is smaller than 0.4 ha (1 acre). Overall, the con-
sumer’s accuracy, defined as how correct classified
pond feature are, is ~88%, indicating that the risk of
overestimating habitat, primarily by inappropriately
identifying vegetation not associated with small water
bodies, is acceptable from a management perspective.

There was a 75.2% increase on the areas of potential
larval habitats of Cx. tarsalis from 1999 to 2004 (Table
2; Fig. 5). This increase corresponds strongly to a
commensurate 74.8% increase in area covered by wa-
ter. Total area that falls into habitat increased from
~619 to ~1,100 ha. This correlation indicates the rel-
ative efficiency in the establishment of mosquito hab-
itat with the increase in surface water. Given that
CBM development is the primary source of new stand-
ing water bodies in this region, the observed increase
in aquatic habitat with the potential to support larval
mosquito populations is directly linked to growth in
the CBM production.

Discussion

This study provides a method to rapidly assess po-
tential larval habitats of Cx. tarsalis at a large spatial
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scale in a cost-effective way. The spatial proximity and
size of water and dense vegetations are critical to
separate larval habitats of Cx. tarsalis from other water
and vegetation features. The classification procedure
presented here successfully models potential larval
habitats for water bodies larger than 0.8 ha (2 acres).
The advantage of explicitly defining the spectral range
and spatial relationship among habitat elements is that
the ecological niche of larval habitat can be more
precisely separated from other features. Results from
the accuracy assessment indicate that the classifica-
tion accuracy depends on the relative percentages of
different sizes of water bodies. However, due to the
spatial resolution of Landsat TM images (2-3 pixels),
the classification will underestimate possible larval
habitats in regions where the majority of water bodies
are less than 0.8 ha (2 acres). The spectral signatures
of these small areas are not separable from the signa-
tures of other features such as streams and shadows of
hillsides.

The average annual increase in CBM production
from the Powder River Basin has been 66% since the
mid-1990s, with a more rapid rate of growth after 2000
(Wyoming Outdoor Council and Powder River Basin
Resource Council 2004). CBM development over the
study period was extracted from online data published
by WOGCC (2005). Wells have produced water were
1,7841in 1999, 8,941 in 2001 and 16,572 in 2004. The link
between individual well production and location or
concentration of surface discharge is lacking; wells are
generally linked via a manifold and pond or surface
discharges are not dependent on the location or num-
ber of wells. As such, the number of productive wells
is a proxy for growth and potential releases of water.
This relationship underscores the need for active as-
sessment, because the spatial distribution of ponds and
water releases is not predictive of the potential for
larval habitat growth and cannot be used as a man-
agement tool.

According to the U.S. Geological Survey (2004), the
Powder River Basin accounts for 30% in 2002 and 70%
in 2003 of all human cases of the West Nile virus in
Wyoming. Data from image classification presented
here documented the dramatic increase of water dis-
charge pools that are potential larval development
sites for Cx. tarsalis. The methodology used in these
analyses and results from changing land cover analyses
can assist local authorities in the prioritization of sites
for West Nile virus prevention programs. In addition,

Fig. 5. Classified larval habitats of C. tarsalis in 1999 and 2004 inside Landsat TM cover area (Sheridan, Johnson, and

Campbell counties).
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the modeled larval habitats can be integrated into a
global positioning system-guided control operation.

Although the risk of West Nile virus is determined
by many factors, such as temperature and avian host
availability, Cx. tarsalis habitats as a source of contri-
bution continues to increase because of the thriving
CBM development in this region. Cx. tarsalis larval
habitat is associated with ponds that are water sources
for many wildlife species and domestic animals such as
cattle. These animals are in very close contact with
infected Cx. tarsalis. Naugle et al. (2004) showed the
decline of greater sage-grouse in this region in recent
years with correlations to increased CBM activities.

The classification procedure developed in this study
can be used to efficiently create a spatially explicit
distribution of Cx. tarsalis larval habitats at the large
scale. Although ponds smaller than one acre will be
overlooked in this assessment, the product is valuable
for the regional prediction of the vector population.
Estimates of larval habitat are a conservative estimate
but reflect the underlying spatial variability and den-
sity of risk. Given that permanent water stands are
usually larger than 0.8 ha (2 acres), results from this
study are suitable for long-term monitoring purposes.
We are currently pursuing the use of higher spatial
resolution images, to improve the resolution of spatial
assessment and to better quantify the impact of CBM
discharge water on mosquito larval habitat for ponds
smaller than the detectable limit with Landsat.

Because Culex spp. mosquitoes are primary vectors
of West Nile virus, the methods and activities in this
study may provide a tool to identify Culex species
habitats in other regions of North America. The image
classification can be easily repeated and adopted. With
the wide availability of Landsat TM data, this classi-
fication procedure can be applied more broadly in the
future.

Acknowledgments

We thank Colleen Boodleman for work digitizing ponds
from the DOQQs. This manuscript was improved by com-
ments from Ramesh Sivanpillai. This work was supported by
grants from USDA-ARS. The manuscript was approved for
publication by the director of USDA-ARS.

References Cited

Beehler, J. W., and M. S. Mulla. 1995. Effects of organic
enrichment on temporal distribution and abundance of
culicine egg rafts. J. Am. Mosq. Control Assoc. 11: 167~
171.

[CDC] Centers for Disease Control and Prevention. 2004.
West Nile Virus Activity—United States, November 9-16,
2004. Morb. Mortal. Wly. Rep. 53: 1071-1072.

Crist, E. P., and R. C. Cicone. 1984. A physically-based
transformation of Thematic Mapper data — the TM Tas-
seled Cap. IEEE Trans. Geosci. Remote Sensing GE 22:
256 -263.

Dale, P. E., and C. D. Morris. 1996. Culex annulirostris
breeding sites in urban areas: using remote sensing and
digital image analysis to develop a rapid predictor of
potential breeding areas. J. Am. Mosq. Control Assoc. 12:
316-320.

JOURNAL OF MEDICAL ENTOMOLOGY

Vol. 43, no. 5

Dale, P. E., S. A. Ritchie, B. M. Territo, C. D. Morris, A.
Mubhar, and B. H. Kay. 1998. An overview of remote
sensing and GIS for surveillance of mosquito vector hab-
itats and risk assessment. J. Vector. Ecol. 23: 54-61.

Denke, P. M., and E. Spackman. 1990. The mosquitoes of
Wyoming. Cooperation Extension Service, Department
of Plant, Soil and Insect Sciences, College of Agriculture,
University of Wyoming, Laramie, WY.

[DOE] U.S. Department of Energy. 2002. Powder River
Basin Coalbed Methane Development and Produced Wa-
ter Management Study, pp. 1-3. U.S. Department of En-
ergy. Office of Fossil Energy and National Energy Tech-
nology Laboratory Strategic Center for Natural Gas.
November 2002.

Enserink, M. 2002. West Nile’s surprisingly swift continen-
tal sweep. Science (Wash., DC) 297: 1988-1989.

ERDAS, Inc. 2003. ERDAS field guide, 7th ed. Leica Geo-
systems GIS & Mapping, LLC, Atlanta, GA.

Gao, B. 1996. NDWI - a normalized difference water index
for remote sensing of vegetation liquid water from space.
Remote Sensing Environ. 58: 257-266.

Goddard, L. B., A. E. Roth, W. K. Reisen, and T. W. Scott.
2002. Vector competence of California mosquitoes for
West Nile virus. Emerg. Infect. Dis. 8: 1385-1391.

Hayes, R. O., E. L. Maxwell, C. J. Mitchell, and T. L.
Woodzick. 1985. Detection, identification and classifi-
cation of mosquito larval habitats using remote sensing
scanners in earth orbiting satellites. Bull. World Health
Organ. 63: 361-374.

Hay, S. L, R. W. Snow, and D. J. Rogers. 1998. From pre-
dicting mosquito habitat to malaria seasons using re-
motely sensed data: practice, problems and perspectives.
Parasitol. Today 14: 306.

Hayes, C. G. 1989. West Nile fever, pp. 59-88. In T. Monath
|ed.], The arboviruses: epidemiology and ecology. CRC,
Boca Raton, FL.

Kauth, R. J., and G. S. Thomas. 1976. The tasseled cap-A
graphic description of the spectral-temporal develop-
ment of agricultural crops as seen by Landsat, pp. 41-51.
In Proceedings, Symposium: Machine Processing of Re-
motely Sensed Data, 21 June-1 July, Purdue University,
West Lafayette, IN.

Laird, M. 1988. The natural history of larval mosquito hab-
itats. Academic, San Deigo, CA.

Linthicum, K. J., C. L. Bailey, F. G. Davies, and C. J. Tucker.
1987. Detection of Rift Valley fever viral activity in Ke-
nya by satellite remote sensing imagery. Science (Wash.,
DC) 235: 1656-1659.

Masuoka, P. M., D. M. Claborn, R. G. Andre, J. Nigro, S. W.
Gordon, T. A. Klein, and H. Kim. 2003. Use of IKONOS
and Landsat for malaria control in the Republic of Korea.
Remote Sensing Environ. 88: 187-194.

Morse, D. L. 2003. West Nile virus - not a passing phenom-
enon. N. Engl. J. Med. 348: 2173-2174.

Naugle, D. E., C. L. Aldridge, B. L. Walker, T. E. Cornish, B. J.
Moynahan, M. J. Holloran, K. Brown, G. D. Johnson, E. T.
Schmidtman, R. T. Mayer, et al. 2004. West Nile virus:
pending crisis for greater sage-grouse. Ecol. Lett. 7: 704 -
713.

Nuccio, V. 2001. Geological overview of coalbed methane.
U.S. Geological Survey, Open File Report 01-235.

Philipson, W. R., and W. R. Hafker. 1981. Manual versus
digital analysis for delineating river flooding. Photogram-
metric Engine. & Remote Sensing 47: 1351-1356.

Pope, K. O., E. ]. Sheffner, K. J. Linthicum, C. L. Bailey, T. M.
Logan, E. S. Kasischke, K. Birney, A. R. Njogu, and C. R.
Roberts. 1992. Identification of central Kenyan Rift Val-
ley Fever virus vector habitats with Landsat TM and



September 2006

evaluation of their flooding status with airborne imaging
radar. Remote Sensing Environ. 40: 185-196.

Reisen, W. 1993. The western encephalitis mosquito, Culex
tarsalis. Wing Beats 4: 16.

Rice, C. A., M. S. Ellis, and J. H. Bullock, Jr. 2000. Water
co-produced with coalbedmethane in the Powder River
Basin, Wyoming: preliminary compositional data. U.S.
Geological Survey Open-File Report 00-372.

Rogers, D. J., M. F. Myers, C. J. Tucker, P. F. Smith, D. J.
White, B. Backenson, M. Eidson, L. D. Kramer, B. Bak-
ker, and S. I. Hay. 2002. Predicting the distribution of
West Nile fever in North America using satellite sensor
data. Photogrammetric Engine. & Remote Sensing 68:
112-114.

Thomson, M. C., S. J. Connor, P.J.M. Milligan, and S. P.
Flasse. 1996. The ecology of malaria - as seen from
Earth-observation satellites. Ann. Trop. Med. Parasitol.
90: 243-264.

U.S. Geological Survey. 2004. West Nile maps. (http://
westnilemaps.usgs.gov/).

Z.0U ET AL.: HABITAT ASSESSMENT OF WEST NILE VIRUS VECTOR MOSQUITO

1041

Washino, R. K., and B. L. Wood. 1994. Application of re-
mote sensing to vector arthropod surveillance and con-
trol. Am. J. Trop. Med. Hyg. 50 (6 Suppl): 134-144.

Wood, B. L., L. R. Beck, R. K. Washino, K. Hibbard, and J. S.
Salute. 1992. Estimating high mosquito-producing rice
fields using spectral and spatial data. Int. J. Remote Sens-
ing 13: 2813-2826.

[WOGCC] Wyoming Oil and Gas Conservation Commis-
sion. 2005. CBM data. (http://wogcc.state.wy.us).

Wyoming Outdoor Council and Powder River Basin Re-
source Council. 2004. Coalbed methane Development
in Wyoming’s Powder River Basin: Natural Gas Develop-
ment and Its Threats to the Landscape, People, and Wildlife.
(http:/ /'www.wyomingoutdoorcouncil.org/ programs/cbm/
publications.php).

Received 14 December 2005; accepted 17 February 2006.




